The Vertical Farm, Explained In Long Form

170109_r29265

Vertical farming can allow former cropland to go back to nature and reverse the plundering of the earth.Illustration by Bruce McCall

For all the reasons we have to enjoy reading this — the Ithaca, New York setting we care deeply about, including Cornell University not least, plus a main character straight out of entrepreneurial conservation central casting — most importantly we have been posting on vertical farming for years and this exposes some of what we have been missing up to now. We have taken information as it arrives on our doorstep, in small bundles. Now, a more in-depth look at the past, present and future of:

THE VERTICAL FARM

Growing crops in the city, without soil or natural light.

By Ian Frazier

No. 212 Rome Street, in Newark, New Jersey, used to be the address of Grammer, Dempsey & Hudson, a steel-supply company. It was like a lumberyard for steel, which it bought in bulk from distant mills and distributed in smaller amounts, mostly to customers within a hundred-mile radius of Newark. It sold off its assets in 2008 and later shut down. In 2015, a new indoor-agriculture company called AeroFarms leased the property. It had the rusting corrugated-steel exterior torn down and a new building erected on the old frame. Then it filled nearly seventy thousand square feet of floor space with what is called a vertical farm. The building’s ceiling allowed for grow tables to be stacked twelve layers tall, to a height of thirty-six feet, in rows eighty feet long. The vertical farm grows kale, bok choi, watercress, arugula, red-leaf lettuce, mizuna, and other baby salad greens.

Grammer, Dempsey & Hudson was founded in 1929. Its workers were members of the Teamsters Union, whose stance could be aggressive. Once, somebody fired shots into the company’s office, but didn’t hit anyone. Despite the union, the company and its employees got along amicably, and many of them worked there all their lives. Men moved steel plate and I-beams with cranes that ran on tracks in the floor. Trucks pulled up to the loading bays and loaded or unloaded, coming and going through the streets of Newark, past the scrap-metal yards and chemical plants and breweries. In an average year, Grammer, Dempsey & Hudson shipped about twenty thousand tons of steel. When the vertical farm is in full operation, as it expects to be soon, it hopes to ship, annually, more than a thousand tons of greens.

Ingrid Williams, AeroFarms’ director of human resources, lives in Orange but knows Newark well. She has degrees in labor studies and sociology from Rutgers, and she visited many of the city’s public-housing apartment buildings in her previous job as a social-services coördinator. She is a slim, widely smiling woman with shoulder-length dreads who dresses in Michelle Obama blues, blacks, and whites. For a while, she had her own show, “The Wow Mom Show,” on local-access TV. Through it she met many people, including a woman who is a financial expert and helps local residents with their budgets. The two became friends, and last year when this woman was giving a speech at a Newark nonprofit Williams showed up to support her.

One of the other speakers that day was David Rosenberg, the C.E.O. and co-founder of AeroFarms. “A light went on in my head when I heard AeroFarms,” Williams told me. “There’s an AeroFarms mini-farm growing salad greens in the cafeteria of my daughter’s school, Philip’s Academy Charter School, on Central Avenue. I volunteer there all the time as part of parents’ stewardship, and I know the kids love growing their own lettuce for the salad bar.” After the speeches, she stayed to congratulate her friend and also introduced herself to Rosenberg. He asked her if she was looking for a job. She started as H.R. director at AeroFarms nine days later.

The mini-farm in the cafeteria at Philip’s Academy is a significant piece of technology. In fact, it is a key to the story, and it figures in the larger picture of vertical farming worldwide and of indoor agriculture in general. If the current movement to grow more food locally, in urban settings, and by high-tech indoor methods follows the path that some predict for it, the mini-farm in the school cafeteria may one day have its own historical plaque.

The mini-farm’s inventor, Ed Harwood, of Ithaca, New York, sold it to the school in 2010. Harwood is a sixty-six-year-old man of medium stature who speaks with the kind of rural accent that sometimes drops the last letters of words. He has been an associate professor at Cornell’s famous school of agriculture, and he began his career as an inventor by coming up with revolutionary improvements in the computer management of dairy cows, an animal he loves. His joyous enthusiasm for what he does has an almost messianic quality.

After spending part of his youth and young adulthood working on his uncle’s dairy farm, he got degrees in microbiology, animal science, dairy science, and artificial intelligence, and applied his knowledge to the dairy industry. One of the first inventions he worked on was a method to determine when a cow is in estrus. Research showed that cows move around more when they’re ready to breed. Harwood helped develop a cow ankle bracelet that transmitted data on how active the cow was each day; the farmer could then consult the data on his computer and know when it was time for the artificial inseminator. To check the accuracy of the bracelet, Harwood spent days walking around the pasture beside a cow with his hand on her back while he counted her steps. He enjoyed the companionship during this rather tedious exercise in ground-truthing and thinks the cow did, too.

He first became interested in growing crops indoors in the two-thousand-aughts. Around 2003, his notebooks and diaries began to converge on ideas about how he could raise crops without soil, sunlight, or large amounts of water. That last goal pointed toward aeroponic farming, which provides water and nutrients to plants by the spraying of a mist, like the freshening automatic sprays over the vegetables in a grocery’s produce department. Aeroponic farming uses about seventy per cent less water than hydroponic farming, which grows plants in water; hydroponic farming uses seventy per cent less water than regular farming. If crops can be raised without soil and with a much reduced weight of water, you can move their beds more easily and stack them high.

Harwood solved the problem of the crop-growing medium by substituting cloth for soil. He tried every type of cloth he could think of—“They got to know me well at the Jo-Ann Fabric store in Ithaca,” he said. Finally, he settled on an artificial fabric that he created himself out of fibres from recycled plastic water bottles, and he patented it. The fabric is a thin white fleece that holds the seeds as they germinate, then keeps the plants upright as they mature. The roots extend below the cloth, where they are available to the water-and-nutrients spray.

Devising a nozzle for the aeroponic sprayer proved a tougher problem. The knock on aeroponics had always been that the nozzles clogged. How he solved this Harwood won’t say. He has no patent for his new nozzle. “It’s more of a stream than a spray,” he said, “but we’re keeping the design proprietary. I have no fear of anyone copying it. You could look at it all day and never figure out how it works.”

He rented an empty canoe factory in Ithaca and set up a two-level grow tower a hundred feet long and five feet wide to employ his new discoveries, along with a light system that eventually consisted of L.E.D. lights modified to his needs. He had decided to grow commercial crops and chose baby salad greens. “My ‘Aha’ moment came when I was in the Wegmans supermarket in Ithaca,” he said. “My engineer, Travis Martin, and I looked at the greens for sale and saw that a pound of lettuce cost one dollar, while a pound of baby greens cost eight dollars. That was enough of a premium that we figured I could make my system profitable with baby greens, so I started a company I called GreatVeggies, and soon I was selling baby greens in several supermarkets in Ithaca.”

When that didn’t bring in enough money, he shut the company down. His financial situation, never robust, then took an upturn when an investor offered funding on the condition that he concentrate on selling the grow towers themselves, rather than the greens. Switching to that business model, Harwood formed a new company called Aero Farm Systems. He leased a number of his grow towers and sold a few. One of them went to Jeddah, Saudi Arabia, and he has no idea what happened to it. Another went to Philip’s Academy, where it’s the mini-farm in the cafeteria. The new company did not earn much, either, but he kept it going in a smaller part of the canoe factory.

The term “vertical farming” has not been around long. It refers to a method of growing crops, usually without soil or natural light, in beds stacked vertically inside a controlled-environment building. The credit for coining the term seems to belong to Dickson D. Despommier, Ph.D., a professor (now emeritus) of parasitology and environmental science at Columbia University Medical School and the author of “The Vertical Farm: Feeding the World in the 21st Century.”

Hearing that Despommier would be addressing an audience of high-school science teachers at Columbia on a recent morning, I arranged to sit in. During the question period, one of the teachers asked a basic question that had also been puzzling me: What are the plants in a soil-free farm made of? Aren’t plants mostly the soil that they grew in? Despommier explained that plants consist of water, mineral nutrients like potassium and magnesium taken from the soil (or, in the case of a vertical farm, from the nutrients added to the water their roots are sprayed with), and carbon, an element plants get from the CO2 in the air and then convert by photosynthesis into sucrose, which feeds the plant, and cellulose, which provides its structure…

Read the whole article here.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s