Catch It To Drink It

The illustrative video above is on its own worth a couple minutes of your time. But the innovative approach to one of the world’s most pressing problems is the thing to take note of. Thanks to National Public Radio (USA) for bringing Evelyn Wang and Omar Yaghi’s work to our attention in this story:

prototype_31-ebd8f9a66e509c5d973bc08e1ef6ded01cd22246-s1200-c85.jpg

A prototype MOF-based water-collection device is set up for testing on the roof of a building on the MIT campus.
Courtesy Evelyn Yang, MIT

Researchers have come up with a new way to extract water from thin air. Literally.

This isn’t the first technology that can turn water vapor in the atmosphere into liquid water that people can drink, but researchers from the Massachusetts Institute of Technology and the University of California, Berkeley, say their approach uses less power and works in drier environments.

The new approach makes use of a substance called a MOF, a metal-organic framework. As the name suggests, these are materials made of metals mixed with organic compounds. Powders made from MOFs are very porous, so researchers have proposed using them to store hydrogen or methane fuels or to capture carbon dioxide.

MIT’s Evelyn Wang and her Berkeley colleague Omar Yaghi decided to try using MOFs to capture water. MOF powders can not only suck up liquid water, they can also absorb water vapor.

And there’s plenty of water vapor in the atmosphere. Even in the driest place on the planet there are tons of water molecules floating overhead.

The researchers built a small prototype water collector that contains a thin layer of MOF powder. The powder absorbs water vapor until it is saturated.

“Once you achieve that maximum amount,” Wang says, “you apply some type of heat to the system to release that water.”

And when the water is released, it collects in the bottom of the prototype.

There are other compounds that can suck water from the air, zeolites for example, but Wang says it takes a significant amount of energy to get these materials to release the water. Not so with a MOF device. “The amount of energy required is very low,” she says…

Read the whole story here.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s