Perils In The Great North

In the summer of 2005 I worked in Yakutia (officially known as the Republic of Sakha). My strongest memory is a week on a boat going from Yakutsk up into the Arctic circle. I can still feel the intensity of the August sun through my sunglasses at midnight, while freezing air pierced my fleece. My project assistant, who was also my translator, helped me understand from the boat’s captain and two crew members that our passage on the Yana River toward the Laptev Sea was getting easier and easier each year. They had all been Soviet naval crew on this river long ago and could remember plenty of Augusts when the northern stretch of this passage was not possible.

Yakutia

I was aware of climate change as a distant calamity that required urgent action, but did not have a clue what it might eventually mean for this location. The funding for our tourism development strategy came from a natural attraction discovered in the permafrost. Our assumptions about attracting nature tourism to this region were clearly rooted in the permafrost. For the following decade, projects we worked on in the region continued with these assumptions, which seems ignorant now.

Kormann-ArcticSummer

In Siberia in late May, thawing permafrost caused an oil-storage tank to collapse, leading to the largest oil spill ever to occur in the Russian Arctic. Photograph by Irina Yarinskaya / AFP / Getty

We have linked out to some of Carolyn Kormann’s various smile-inducing environmental stories, as well as more serious ones. A Disastrous Summer in the Arctic goes darker than her previous darkest, but is a must-read for keeping current on the impacts of climate change in faraway places.

The remote Siberian town of Verkhoyansk, three thousand miles east of Moscow and six miles north of the Arctic Circle, has long held the record, with another Siberian town, for the coldest inhabited place in the world. The record was set in 1892, when the temperature dropped to ninety below zero Fahrenheit, although these days winter temperatures are noticeably milder, hovering around fifty below. Last Saturday, Verkhoyansk claimed a new record: the hottest temperature ever recorded in the Arctic, with an observation of 100.4 degrees Fahrenheit—the same temperature was recorded that day in Las Vegas. Miami has only hit a hundred degrees once since 1896. “This has been an unusually hot spring in Siberia,” Randy Cerveny, the World Meteorological Organization’s rapporteur of weather and climate extremes, said. “The coinciding lack of underlying snow in the region, combined with over-all global temperature increases, undoubtedly helped play a critical role in causing this extreme.” Siberia, in other words, is in the midst of an astonishing and historic heat wave.

Anthropogenic climate change is causing the Arctic to heat up twice as fast as the rest of the planet. Climate models had predicted this phenomenon, known as Arctic amplification, but they did not predict how fast the warming would occur. Although Verkhoyansk has seen hot temperatures in the past, Saturday’s 100.4-degree record follows a wildly warm year across the region. Since December, temperatures in western Siberia have been eighteen degrees above normal. Since January, the mean temperature across Siberia has been at least 5.4 degrees Fahrenheit above the long-term average. As the meteorologist Jeff Berardelli reported for CBS, the heat that has fallen on Russia in 2020 “is so remarkable that it matches what’s projected to be normal by the year 2100, if current trends in heat-trapping carbon emissions continue.” By April, owing to the heat, wildfires across the region were larger and more numerous than they were at the same time last year, when the Russian government eventually had to send military aircrafts to battle vast blazes. The scale of the current wildfires—with towering plumes of smoke visible for thousands of miles on satellite images—suggest that this summer could be worse. Because of the coronavirus pandemic, they will also be more complicated to fight.

Toward the end of May, as the sun stopped dropping below the horizon, the heat continued. In the town of Khatanga, far north of the Arctic Circle, the temperature hit seventy-eight degrees Fahrenheit, or forty-six degrees above normal, topping the previous record by twenty-four degrees. The heat and fires are also hastening the dissolution of Siberian permafrost, perennially frozen ground that, when thawed, unleashes more greenhouse gases and dramatically destabilizes the land, with grave consequences. On May 29th, outside Norilsk, the northernmost city in the world, the thawing ground buckled, causing an oil-storage tank to collapse and spew more than a hundred and fifty thousand barrels, or twenty-one thousand tons, of diesel fuel into the Ambarnaya River. The spill was the largest to ever occur in the Russian Arctic.

Norilsk, which was constructed in the nineteen-thirties by prisoners of a nearby Gulag camp, Norillag, was already one of the most polluted places in the world. Most of its hundred and seventy-seven thousand residents work for Norilsk Nickel, the company that owns the collapsed oil tank. Its massive mining and metallurgy complex alone is worth two per cent of Russia’s G.D.P. The city contributes a fifth of the global nickel supply and nearly half of the world’s palladium, a metal used to make catalytic converters. Factories billow clouds of sulfur dioxide incessantly, and the resulting acid rain has turned the city and its surroundings into an industrial wasteland, with no green space or parks, just dirt and dead trees. Life expectancy in Norilsk is twenty years shorter than it is in the United States. The last time the town made the news, before the oil spill, was exactly a year ago, when an emaciated polar bear, a refugee from its melting home, was photographed rummaging through the city dump.

Norilsk Nickel’s executives have tried to skirt responsibility for the oil spill by blaming the thawing permafrost—or, as a press release stated, “a sudden sinking of the storage tank’s pillars, which served accident-free for more than thirty years.” But the thaw did not happen unexpectedly, out of nowhere. Buildings in Norilsk have collapsed because of the sagging ground. Russian and international experts have been aware of the risks that rapidly thawing permafrost represents for more than a decade. A 2017 report from an Arctic Council working group said that “communities and infrastructure built on frozen soils are significantly affected by thawing permafrost, one of the most economically costly impacts of climate change in the Arctic.” They found that thawing permafrost could contaminate freshwater, when previously frozen industrial and municipal waste is released, and that the bearing capacity of building foundations has declined by forty to fifty per cent in some Siberian settlements since the nineteen-sixties. They also noted that “the vast Bovanenkovo gas field in western Siberia has seen a recent increase in landslides related to thawing permafrost.” The authors of a 2018 paper, published in Nature Communications, found that “45% of the hydrocarbon extraction fields in the Russian Arctic are in regions where thaw-related ground instability can cause severe damage to the built environment.” The paper continued, “Alarmingly, these figures are not reduced substantially even if the climate change targets of the Paris Agreement are reached.”…

Read the whole article here.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s